Нейрокомпьютерные системы


              

Метод динамических ядер в классификации без учителя


Пусть задана выборка предобработанных векторов данных

- пространство векторов данных. Каждому классу будет соответствовать некоторое ядро
- пространство ядер.

Для любых

и
определим меру близости
, а для каждого набора из
ядер
и любого разбиения
на
классов

определим критерий качества

(1)

Требуется найти набор

и разбиение
, минимизирующие
. Шаг алгоритма разбиваем на
этапа:

1) Для фиксированного набора ядер

ищем минимизирующее
разбиение
; оно дается следующим решающим правилом:
, если
при
(когда для
минимум
достигается при нескольких значениях
, выбор между ними может быть сделан произвольно).

2) Для каждого

, полученного на первом этапе, отыскивается
, минимизирующее критерий качества

Начальные значения

,

выбираются произвольно либо по какому-нибудь эвристическому правилу. Если ядру

ставится в соответствие элемент сети, вычисляющей по входному сигналу

функцию

, то решающее правило для классификации дается интерпретатором "проигравший забирает все": элемент
принадлежит классу
, если выходной сигнал
-го элемента
меньше всех остальных. Мера близости
выбирается такой, чтобы легко можно было найти ядро
, минимизирущее
для данного
.



Содержание  Назад  Вперед