Радиальная нейронная сеть
Использование в разложении
базисных функций, где
- это количество обучающих выборок, недопустимо также и с практической точки зрения, поскольку обычно количество этих выборок очень велико, и в результате вычислительная сложность обучающего алгоритма становится чрезмерной. Решение системы уравнений (1) размерностью
при больших значениях
становится затруднительным. Так же, как и для многослойных сетей, необходимо редуцировать количество весов, что в этом случае сводится к уменьшению количества базисных функций. Поэтому отыскивается субоптимальное решение в пространстве меньшей размерности, которое с достаточной точностью аппроксимирует точное решение. Если ограничиться
базисными функциями, то аппроксимирующее решение можно представить в виде
где
, а
- множество центров, которые необходимо определить. В особом случае, если принять
, можно получить точное решение
.
Чаще всего в качестве радиальной функции применяется функция Гаусса. При размещении ее центра в точке
она может быть определена в сокращенной форме как
В этом выражении
- параметр, от значения которого зависит ширина функции.
Полученное решение, представляющее аппроксимирующую функцию в многомерном пространстве в виде взвешенной суммы локальных базисных радиальных функций (выражение (3)), может быть интерпретировано радиальной нейронной сетью, представленной на рис. 2 (для упрощения эта сеть имеет только один выход), в которой
определяется зависимостью (4). Это сеть с двухслойной структурой, в которой только скрытый слой выполняет нелинейное отображение, реализуемое нейронами с базисными радиальными функциями. Выходной нейрон, как правило, линеен, а его роль сводится к взвешенному суммированию сигналов, поступающих от нейронов скрытого слоя. Вес
, как и при использовании сигмоидальных функций, представляет поляризацию (порог), вводящую показатель постоянного смещения функции.
Рис. 2. Обобщенная структура радиальной сети
Полученная архитектура радиальных сетей имеет структуру, аналогичную многослойной структуре сигмоидальных сетей с одним скрытым слоем.
Содержание Назад Вперед
Forekc.ru
Рефераты, дипломы, курсовые, выпускные и квалификационные работы, диссертации, учебники, учебные пособия, лекции, методические пособия и рекомендации, программы и курсы обучения, публикации из профильных изданий