что для ряда радиальных функций
![]() | (1) |
где





Доказано, что для ряда радиальных функций в случае

квадратная интерполяционная матрица

![]() | (2) |
что позволяет получить вектор весов выходного нейрона сети.
Теоретическое решение проблемы, представленное выражением (2), не может считаться абсолютно истинным по причине серьезного ограничения общих свойств сети, вытекающих из сделанных вначале допущений. При очень большом количестве обучающих выборок и равном ему количестве радиальных функций проблема с математической точки зрения становится бесконечной (плохо структурированной), поскольку количество уравнений начинает превышать число степеней свободы физического процесса, моделируемого уравнением (1). Это означает, что результатом такого чрезмерного количества весовых коэффициентов станет адаптация модели к разного рода шумам или нерегулярностям, сопровождающим обучающие выборки. Как следствие, интерполирующая эти данные гиперповерхность не будет гладкой, а обобщающие возможности останутся очень слабыми.
Чтобы их усилить, следует уменьшить количество радиальных функций и получить из избыточного объема данных дополнительную информацию для регуляризации задачи и улучшения ее обусловленности.
Forekc.ru
Рефераты, дипломы, курсовые, выпускные и квалификационные работы, диссертации, учебники, учебные пособия, лекции, методические пособия и рекомендации, программы и курсы обучения, публикации из профильных изданий