Генетические алгоритмы
Генетические алгоритмы имитируют процессы наследования свойств живыми организмами и генерируют последовательности новых векторов


На начальной стадии выполнения генетического алгоритма случайным образом инициализируется определенная популяция хромосом (векторов

Селекция хромосом для спаривания (необходимого для создания нового поколения) может основываться на разных принципах. Одним из наиболее распространенных считается принцип элитарности, в соответствии с которым наиболее приспособленные (в смысле целевой функции) хромосомы сохраняются, а наихудшие отбраковываются и заменяются вновь созданным потомством, полученным в результате скрещивания пар родителей.
Существует огромное множество методов скрещивания, начиная с полностью случайного. При взвешенно-случайном скрещивании учитывается информация о текущем значении целевой функции. Отбор может происходить по принципу рулетки; при этом площадь сегмента колеса рулетки, сопоставленного конкретной хромосоме, пропорциональна величине ее функции приспособленности


- ее целевая функция.
Процесс скрещивания основан на рассечении пары хромосом на две части с последующим обменом этих частей в хромосомах родителей (рис. 1). Место рассечения также выбирается случайным образом. Количество новых потомков равно количеству отбракованных в результате селекции (размер популяции остается неизменным). Признается допустимым перенос в очередное поколение некоторых случайно выбранных хромосом вообще без скрещивания.

Рис. 1. Процесс скрещивания
Последняя генетическая операция - это мутация. При двоичном кодировании мутация состоит в инверсии случайно выбранных битов.
Forekc.ru
Рефераты, дипломы, курсовые, выпускные и квалификационные работы, диссертации, учебники, учебные пособия, лекции, методические пособия и рекомендации, программы и курсы обучения, публикации из профильных изданий