Алгоритм обратного распространения ошибки
Возьмем двухслойную сеть (рис. 1) (входной слой не рассматривается). Веса нейронов первого (скрытого) слоя пометим верхним индексом (1), а выходного слоя - верхним индексом (2). Выходные сигналы скрытого слоя обозначим







Цель обучения состоит в подборе таких значений весов









Рис. 1. Пример двухслойной нейронной сети
В выходном слое


Из формулы следует, что на значение выходного сигнала влияют веса обоих слоев, тогда как сигналы, вырабатываемые в скрытом слое, не зависят от весов выходного слоя.
Основу алгоритма обратного распространения ошибки составляет целевая функция, формулируемая, как правило, в виде квадратичной суммы разностей между фактическими и ожидаемыми значениями выходных сигналов. Для обучающей выборки, состоящей из


Минимизация целевой функции достигается уточнением вектора весов (обучением) по формуле

где
![]() |
(1) |




![]() |
(2) |
Компоненты градиента рассчитываются дифференцированием зависимости (2).
Forekc.ru
Рефераты, дипломы, курсовые, выпускные и квалификационные работы, диссертации, учебники, учебные пособия, лекции, методические пособия и рекомендации, программы и курсы обучения, публикации из профильных изданий