Нейрокомпьютерные системы



              

Возрождение нейронных сетей - часть 2


К однослойным относятся модель Хопфилда и так называемая машина Больцмана. Многослойная сеть имеет входной, выходной и скрытые слои. На входной слой подается информация, с выходного снимается результат обработки, а скрытые слои участвуют в обработке информации.

В отличие от традиционных средств обработки информации, программирование нейронных сетей осуществляется неявно в процессе обучения. Обучение строится следующим образом: существует так называемый задачник, то есть набор примеров с заданными ответами, эти примеры предъявляются системе, нейроны получают условие примера и преобразуют их. Далее нейроны несколько раз обмениваются преобразованными сигналами и, наконец, выдают ответ в виде набора сигналов. Отклонение от правильного ответа штрафуется. Обучение заключается в минимизации штрафа как неявной функции связей.

В традиционных вычислительных системах:

  1. Необходимо точное описание алгоритма (ориентация на обработку символов).
  2. Данные должны быть точными. Аппаратура легко повреждается. Разрушение основных элементов памяти делает машину неисправной.
  3. Каждый обрабатываемый объект явно указан в памяти.
  4. Трудно построить хороший алгоритм восприятия образов и ассоциативной выборки (неясно, например, как мы распознаем рукописные символы, конкретного написания которых раньше не видели).

В нейрокомпьютере (нейронной сети):

  1. Способ обработки больше похож на обработку сигналов, вместо программы — набор весов нейронов, вместо программирования — обучение нейронов (настройка весов).
  2. Нейронная сеть устойчива к шумам, искажения данных не влияют существенно на результат (в том числе выход из строя отдельных нейронов).
  3. Обрабатываемые объекты представлены весами нейронов неявно. В результате сеть может работать с объектами, которые ей ранее не встречались, и обобщать результаты обучения.
  4. Сети хороши для задач восприятия и ассоциативной выборки.




Содержание  Назад  Вперед