Нейрокомпьютерные системы



              

Введение


Многослойные рекуррентные сети представляют собой развитие однонаправленных сетей персептронного типа за счет добавления в них соответствующих обратных связей. Обратная связь может исходить либо из выходного, либо из скрытого слоя нейронов. В каждом контуре такой связи присутствует элемент единичной задержки, благодаря которому поток сигналов может считаться однонаправленным (выходной сигнал предыдущего временного цикла рассматривается как априори заданный, который просто увеличивает размерность входного вектора сети). Представленная подобным образом рекуррентная сеть, с учетом способа формирования выходного сигнала, функционирует как однонаправленная персептронная сеть. Тем не менее, алгоритм обучения такой сети, адаптирующий значения синаптических весов, является более сложным из-за зависимости сигналов в момент времени

t
от их значений в предыдущие моменты и соответственно из-за более громоздкой формулы для расчета вектора градиента.

При обсуждении рекуррентных сетей, в которых в качестве выходного элемента используется многослойный персептрон, рассмотрим наиболее известные структуры сетей RMLP, RTRN, Эльмана.




Содержание  Назад  Вперед